01. A Bayesian likely responder approach for the analysis of randomized controlled trials
Conference: Women in Statistics and Data Science 2025
11/13/2025: 11:45 AM - 1:15 PM EST
Speed
An important goal of precision medicine is to personalize medical treatment by identifying individuals who are most likely to benefit from a specific treatment. The Likely Responder (LR) framework, which identifies a subpopulation where treatment response is expected to exceed a certain clinical threshold, plays a role in this effort. However, the LR framework, and more generally, data-driven subgroup analyses, often fail to account for uncertainty in the estimation of model-based data-driven subgrouping. We propose a simple two-stage approach that integrates subgroup identification with subsequent subgroup-specific inference on treatment effects. We incorporate model estimation uncertainty from the first stage into subgroup-specific treatment effect estimation in the second stage, by utilizing Bayesian posterior distributions from the first stage.
We evaluate our method through simulations, demonstrating that the proposed Bayesian two-stage model produces better calibrated confidence intervals than naive approaches using state-of-the-art machine learning models. We apply our method to an international COVID-19 treatment trial, which shows substantial variation in treatment effects across data-driven subgroups.
Causal inference
Precision medicine
Treatment effect heterogeneity
Data-driven subgroup analysis
Uncertainty quantification
Presenting Author
Annan Deng, New York University School of Medicine
First Author
Annan Deng, New York University School of Medicine
Target Audience
Mid-Level
Tracks
Knowledge
Women in Statistics and Data Science 2025
You have unsaved changes.