A Matrix normal Graphical Model for inferring Gene Spatial co-expression
Abstract Number:
2788
Submission Type:
Contributed Abstract
Contributed Abstract Type:
Speed
Participants:
Chichun Tan (1), Ying Ma (1)
Institutions:
(1) Brown University, Providence, RI
Co-Author:
First Author:
Presenting Author:
Abstract Text:
Recent advances in spatially resolved transcriptomics (SRT) have illuminated gene co-expression networks in spatial contexts, offering insights into disease mechanisms. However, current methods, mainly designed for single-cell studies, tend to overlook the intricate interactions between spatial location and gene expression networks. None of them are able to handle the increasingly prevalent large-scale datasets. To address these limitations, we propose a novel matrix normal based method, spMGM, for inferring gene co-expression networks in SRT studies. spMGM accounts for intricate interactions between spatial context and gene expression. Through extensive simulations, both model-based and non-model based, spMGM accurately recovers the underlying gene co-expression network, improving accuracy by 40% - 50% compared to existing methods. Moreover, spMGM can efficiently handle large-scale datasets like 10x Xenium, with 10 times faster than the most advanced method. Applying spGMM to breast cancer tissue demonstrates its ability to detect breast cancer-related hub genes that have not been identified by the other methods.
Keywords:
Gene Co-expression Network|Spatial Transcriptomics|Matrix Normal Model| | |
Sponsors:
IMS
Tracks:
Statistical Methodology
Can this be considered for alternate subtype?
Yes
Are you interested in volunteering to serve as a session chair?
No
I have read and understand that JSM participants must abide by the Participant Guidelines.
Yes
I understand that JSM participants must register and pay the appropriate registration fee by June 1, 2024. The registration fee is non-refundable.
I understand
You have unsaved changes.