Efficient Designs and Analysis of Two-Phase Studies with Longitudinal Binary Data
Ran Tao
Speaker
Vanderbilt University Medical Center
Monday, Aug 5: 9:25 AM - 9:50 AM
Invited Paper Session
Oregon Convention Center
Researchers interested in understanding the relationship between a readily available longitudinal binary outcome and a novel biomarker exposure can be confronted with ascertainment costs that limit sample size. In such settings, two-phase studies can be cost-effective solutions that allow researchers to target informative individuals for exposure ascertainment and increase estimation precision for time-varying and/or time-fixed exposure coefficients. In this paper, we introduce a novel class of residual-dependent sampling (RDS) designs that select informative individuals using data available on the longitudinal outcome and inexpensive covariates. Together with the RDS designs, we propose a semiparametric analysis approach that efficiently uses all data to estimate the parameters. We describe a numerically stable and computationally efficient EM algorithm to maximize the semiparametric likelihood. We examine the finite sample operating characteristics of the proposed approaches through extensive simulation studies. We illustrate the usefulness of the proposed RDS designs and analysis method in the Lung Health Study.
You have unsaved changes.