Fair Classification with Finite-Sample and Distribution-Free Guarantee
Tuesday, Aug 6: 9:00 AM - 9:25 AM
Invited Paper Session
Oregon Convention Center
Algorithmic fairness plays an increasingly critical role in machine learning research. Several group fairness notions and algorithms have been proposed. However, the fairness guarantee of existing fair classification methods mainly depends on specific data distributional assumptions, often requiring large sample sizes, and fairness could be violated when there is a modest number of samples, which is often the case in practice. In this paper, we propose FaiREE, a fair classification algorithm that can satisfy group fairness constraints with finite-sample and distribution-free theoretical guarantees. FaiREE can be adapted to satisfy various group fairness notions (e.g., Equality of Opportunity, Equalized Odds, Demographic Parity, etc.) and achieve the optimal accuracy. These theoretical guarantees are further supported by experiments on both synthetic and real data. FaiREE is shown to have favorable performance over state-of-the-art algorithms.
You have unsaved changes.