Covariate adjustment in randomized trials: comparison of machine learning and parametric models
Monday, Aug 5: 9:35 AM - 9:50 AM
2299
Contributed Papers
Oregon Convention Center
For estimating the average treatment effect in randomized trials, covariate adjustment improves the efficiency of an estimator with minimal impact on bias and type 1 error. However, there have been insufficient comparisons between parametric models and machine learning-based causal inference methods in randomized settings, specifically considering the trade-offs between a specified model's correctness and its parametric constraints. This study aims to compare the efficiency among the following methods: 1) linear regression models, 2) meta-learners (machine learning-based S-, T-, X-, and DR-learners), and 3) augmented inverse probability weighted estimators (semiparametric or nonparametric machine learning-based specification). In simulation study, the efficiency is improved by meta-learners to the same extent as or more than parametric model, regardless of the correctness of the specification of parametric model. However, some methods have issues such as bias to the null for S-learner. Considering both efficiency and bias, we conclude that DR-learner is a viable potion in modest-sized trials.
randomized controlled trials
covariate adjustment
machine learning
asymptotic efficiency
model misspecification
semiparametric efficient estimators
Main Sponsor
International Statistical Institute
You have unsaved changes.