Understanding Post-Pandemic Mental Health via Statistical Learning
Sunday, Aug 4: 3:35 PM - 3:40 PM
2437
Contributed Speed
Oregon Convention Center
Understanding the prevalence and impact of anxiety and depressive symptoms is crucial in recognizing the global pandemic aftermath. This research will explore the mental health complexity in the post-pandemic landscape of 2022 by analyzing data from the General Social Survey (https://gss.norc.org/). The research will focus on studying two primary mental health measures, Generalized Anxiety Disorder (GAD) and Patient Health Questionnaire (PHQ) scores to identify individual well-being subtleties that affect these scores and offer insights into the evolving mental health relationship. We propose a two-step approach for this research: first, employing machine learning algorithms to analyze and identify distinct subgroups and structure patterns within the individual mental health data, and second, based on findings from first step, utilizing advanced statistical models to explore the joint impact of individual and societal factors on mental health. The ultimate goal of this study is to identify key factors influencing post-pandemic mental health and to provide actionable insights for policymakers, clinicians, and mental health practitioners.
Mental Health
Post Pandemic
GAD-2
PHQ-2
Data Science
Main Sponsor
Section on Statistical Computing
You have unsaved changes.