Non-Euclidean Bayesian Constraint Relaxation via Divergence-to-Set Priors

Jason Xu Co-Author
 
Rick Presman First Author
Duke University
 
Rick Presman Presenting Author
Duke University
 
Monday, Aug 5: 9:45 AM - 9:50 AM
3277 
Contributed Speed 
Oregon Convention Center 

Description

Constraints on parameter spaces promote various structures in Bayesian inference. Simultaneously, they present methodological challenges, such as efficiently sampling from the posterior. While recent work has tackled this important problem through various approaches of constraint relaxation, much of the underlying machinery assumes the parameter space is Euclidean-an assumption that doesn't hold in many settings. Building on the recently proposed class of distance-to-set priors (Presman and Xu, 2023), this talk explores extensions of constraint relaxation in non-Euclidean spaces. We propose a natural extension of these priors, which we call (Bregman) divergence-to-set priors, exemplify many settings where they can be leveraged, and demonstrate how techniques originally from an optimization algorithm known as mirror descent can utilized for non-Euclidean Bayesian constraint relaxation.

Keywords

Constraint relaxation

Hamiltonian Monte Carlo

Bregman divergence

MCMC Sampler 

Main Sponsor

Section on Bayesian Statistical Science