11 Classified functional mixed effects model prediction
Monday, Aug 5: 2:00 PM - 3:50 PM
3883
Contributed Posters
Oregon Convention Center
In nowadays biomedical research, there has been a growing demand for making accurate predictions at subject levels. In many of these situations, data are collected as longitudinal curves and display distinct individual characteristics. Thus, prediction mechanisms accommodated with functional mixed effects models (FMEM) are useful. In this paper, we developed a classified functional mixed model prediction (CFMMP) method, which adapts classified mixed model prediction (CMMP) to the framework of FMEM. Performance of CFMMP against functional regression prediction based on simulation studies and the consistency property of CFMMP estimators are explored. Real-world applications of CFMMP are illustrated using real world examples including data from the hormone research menstrual cycles and the diffusion tensor imaging.
Classification
CMMP
functional mixed effects model
mean squared prediction error
You have unsaved changes.