Scalable Bayesian Regression with Massive and High-dimensional Data
Abstract Number:
1395
Submission Type:
Contributed Abstract
Contributed Abstract Type:
Poster
Participants:
Gyeongmin Park (1), Gyuhyeong Goh (2), Dipak Dey (3)
Institutions:
(1) Kyungpook National University, N/A, (2) Department of Statistics, Kyungpook National University, N/A, (3) University of Connecticut, N/A
Co-Author(s):
Gyuhyeong Goh
Department of Statistics, Kyungpook National University
First Author:
Presenting Author:
Abstract Text:
The use of Gibbs sampling for high-dimensional Bayesian regression faces computational challenges due to iterative computation of large-scale covariance matrices. To address this issue, we propose a scalable Bayesian regression framework that incorporates a subsampling strategy into the Gibbs sampling scheme under shrinkage priors including spike-and-slab priors. To correct the bias associated with the sub-sampling method, we employ an acceptance-rejection approach that is scalable to high-dimensional and massive data sets. Our proposed method is applicable to a variety of shrinkage priors that are widely used for high-dimensional Bayesian regression. Our simulation study and real data analysis show that our proposed approach significantly reduces computational costs for Gibbs sampling with high-dimensional and massive data compared to existing scalable MCMC methods.
Keywords:
Acceptance-rejection method|Gibbs sampling|High-dimensional Bayesian regression|Scalable Bayesian computation| |
Sponsors:
Section on Bayesian Statistical Science
Tracks:
Bayesian Computation
Can this be considered for alternate subtype?
No
Are you interested in volunteering to serve as a session chair?
No
I have read and understand that JSM participants must abide by the Participant Guidelines.
Yes
I understand that JSM participants must register and pay the appropriate registration fee by June 3, 2025. The registration fee is non-refundable.
I understand
You have unsaved changes.