Selective inference is easier with p-values
Abstract Number:
2678
Submission Type:
Contributed Abstract
Contributed Abstract Type:
Paper
Participants:
Anav Sood (1)
Institutions:
(1) Stanford University, N/A
First Author:
Presenting Author:
Abstract Text:
Selective inference is a subfield of statistics that enables valid inference after selection of a data-dependent question. In this paper, we introduce selectively dominant p-values, a class of p-values that allow practitioners to easily perform inference after arbitrary selection procedures. Unlike a traditional p-value, whose distribution must stochastically dominate the uniform distribution under the null, a selectively dominant p-value must have a post-selection distribution that stochastically dominates that of a uniform having undergone the same selection process; moreover, this property must hold simultaneously for all possible selection processes. Despite the strength of this condition, we show that all commonly used p-values are selectively dominant. By recasting two canonical selective inference problems-inference on winners and rank verification-in our selective dominance framework, we provide simpler derivations, a deeper conceptual understanding, and new generalizations and variations of these methods. Additionally, we use our insights to introduce selective variants of methods that combine p-values, such as Fisher's combination test.
Keywords:
Selective inference|Winner's curse|Rank Verification|Publication bias|Data carving |Conditional inference
Sponsors:
IMS
Tracks:
Statistical Methodology
Can this be considered for alternate subtype?
Yes
Are you interested in volunteering to serve as a session chair?
Yes
I have read and understand that JSM participants must abide by the Participant Guidelines.
Yes
I understand that JSM participants must register and pay the appropriate registration fee by June 3, 2025. The registration fee is non-refundable.
I understand
You have unsaved changes.