Leveraging Synthetic Data for Improved Predictive Inference

Yonghoon Lee Speaker
University of Pennsylvania
 
Tuesday, Aug 5: 10:35 AM - 11:00 AM
Invited Paper Session 
Music City Center 
Conformal prediction is a framework for predictive inference with a distribution-free, finite-sample guarantee. However, it tends to provide uninformative prediction sets when calibration data are scarce. This paper introduces Synthetic-powered predictive inference (SPI), a novel framework that incorporates synthetic data---e.g., from a generative model---to improve sample efficiency. At the core of our method is a score transporter: an empirical quantile mapping that aligns nonconformity scores from trusted, real data with those from synthetic data. By carefully integrating the score transporter into the calibration process, SPI provably achieves finite-sample coverage guarantees without making any assumptions about the real and synthetic data distributions. When the score distributions are well aligned, SPI yields substantially tighter and more informative prediction sets than standard conformal prediction.

Keywords

Large language models

Conformal inference