Convergence rates for Poisson learning to a Poisson equation with measure data.
Leon Bungert
Co-Author
Institute of Mathematics, Center for Artificial Intelligence and Data Science (CAIDAS), University o
Max Mihailescu
Co-Author
Institute for Applied Mathematics, University of Bonn
Thursday, Aug 7: 8:35 AM - 8:50 AM
2731
Contributed Papers
Music City Center
In this paper we prove discrete to continuum convergence rates for Poisson Learning, a graph-based semi-supervised learning algorithm that is based on solving the graph Poisson equation with a source term consisting of a linear combination of Dirac deltas located at labeled points and carrying label information. The corresponding continuum equation is a Poisson equation with measure data in a Euclidean domain $\Omega \subset \R^d$. The singular nature of these equations is challenging and requires an approach with several distinct parts: (1) We prove quantitative error estimates when convolving the measure data of a Poisson equation with (approximately) radial function supported on balls. (2) We use quantitative variational techniques to prove discrete to continuum convergence rates on random geometric graphs with bandwidth $\eps>0$ for bounded source terms. (3) We show how to regularize the graph Poisson equation via mollification with the graph heat kernel, and we study fine asymptotics of the heat kernel on random geometric graphs. Combining these three pillars we obtain $L^1$ convergence rates that scale, up to logarithmic factors, like $\O(\eps^{\frac{1}{d+2}})$ for general data distributions, and $\O(\eps^{\frac{2-\sigma}{d+4}})$ for uniformly distributed data, for all $\sigma>0$. These rates are valid with high probability if $\eps\gg\left({\log n}/{n}\right)^q$ where $n$ denotes the number of vertices of the graph and $q \approx \frac{1}{3d}$.
Poisson Learning
Measure Data
Analysis of PDEs
Machine Learning
Numerical Analysis
Probability
Main Sponsor
Section on Statistical Learning and Data Science
You have unsaved changes.