Physics-Informed multiple quantile regression for complex environmental data

Ilenia Di Battista Co-Author
Politecnico di Milano
 
Marco De Sanctis Co-Author
Politecnico di Milano
 
Eleonora Arnone Co-Author
Università degli Studi di Torino
 
Cristian Castiglione Co-Author
Bocconi University
 
Mauro Bernardi Co-Author
Università degli Studi di Padova
 
Francesca Ieva Co-Author
Politecnico di Milano
 
Laura Maria Sangalli First Author
MOX - Dipartimento Di Matematica, Politecnico Di Milano
 
Laura Maria Sangalli Presenting Author
MOX - Dipartimento Di Matematica, Politecnico Di Milano
 
Tuesday, Aug 5: 10:50 AM - 11:05 AM
2306 
Contributed Papers 
Music City Center 
I will present a Physics-Informed multiple quantile regression model. The method features a regularizing term involving a Partial Differential Equation, that encodes the available problem-specific information about the phenomenon under study. The method permits to jointly estimate multiple quantiles, preserving monotonicity. Moreover, it can handle spatial data observed over non-Euclidean domains, such as linear networks, two-dimensional manifolds and non-convex volumes. The method will be illustrated through application to the study of nitrogen dioxide over Lombardy region, in Italy.

Keywords

spatial data analysis

smoothing with roughness penalties

quantile regression 

Main Sponsor

IMS