Analyzing whale calling through Hawkes process modeling
Tuesday, Aug 6: 2:35 PM - 2:50 PM
3531
Contributed Papers
Oregon Convention Center
Sound is assumed to be the primary modality of communication among marine mammal species. Analyzing acoustic recordings helps to understand the function of the acoustic signals as well as the possible impact of anthropogenic noise on acoustic behavior. Motivated by a dataset from a network of hydrophones in Cape Cod Bay, Massachusetts, utilizing automatically detected calls in recordings, we study the communication process of the endangered North Atlantic right whale. For right whales an "up-call" is known as a contact call, and ensuing counter-calling between individuals is presumed to facilitate group cohesion. We present novel spatiotemporal excitement modeling consisting of a background process and a counter-call process. The background process intensity incorporates the influences of diel patterns and ambient noise on occurrence. The counter-call intensity captures potential excitement, that calling elicits calling behavior. Call incidence is found to be clustered in space and time; a call seems to excite more calls nearer to it in time and space. We find evidence that whales make more calls during twilight hours, respond to other whales nearby, and are likely to remain quiet in the presence of increased ambient noise.
Gaussian process
Markov chain Monte Carlo
North Atlantic right whales
random time change theorem
spatial process
temporal point patterns
Main Sponsor
Section on Statistics and the Environment
You have unsaved changes.